LIPIDS & MEMBRANES Course: Biochemistry I (BIOC 230)

Textbook: Principles of Biochemistry, 5th Ed., by L. A. Moran and others. 2014, Pearson. . Chapter 9

Function of major acyl-lipids

- Phospholipids membrane components
- □ Triacylglycerols storage fats and oils
- Waxes moisture barrier
- □ Eicosanoids signaling molecules (prostaglandin)
- Sphingomyelins membrane component (in mylein sheaths)
- Glycospingolipids cell recognition (ABO blood group antigen)

- Steroids (sterols) membrane component, hormones
- Lipid Vitamins Vitamin A, E, K
- Carotenoids photosynthetic accessory pigments
- Chlorophyll major light harvesting pigment
- Plastoquinone/ubiquinone lipid soluble electron carriers
- Essential oils menthol

Carbon	Structure*	Systematic name ¹	Common name (derivation)	Melting point (°C)	Solubility at 30 °C (mg/g solvent)	
skeleton					Water	Benzene
12:0	CH ₃ (CH ₂) ₁₀ COOH	n-Dodecanoic acid	Lauric acid (Latin <i>laurus,</i> "laurel plant")	44.2	0.063	2,600
14:0	CH ₃ (CH ₂) ₁₂ COOH	n-Tetradecanoic acid	Myristic acid (Latin <i>Myristica,</i> nutmeg genus)	53.9	0.024	874
16:0	CH ₃ (CH ₂) ₁₄ COOH	n-Hexadecanoic acid	Palmitic acid (Latin <i>palma,</i> "palm tree")	63.1	0.0083	348
18:0	CH ₃ (CH ₂) ₁₆ COOH	n-Octadecanoic acid	Stearic acid (Greek stear, "hard fat")	69.6	0.0034	124
20:0	CH ₃ (CH ₂) ₁₈ COOH	n-Eicosanoic acid	Arachidic acid (Latin Arachis, legume genus)	76.5		
24:0	CH ₃ (CH ₂) ₂₂ COOH	n-Tetracosanoic acid	Lignoceric acid (Latin <i>lignum,</i> "wood" + cera,"wax")	86.0		
16:1(Δ ⁹)	CH ₃ (CH ₂) ₅ CH— CH(CH ₂) ₇ COOH	cis-9-Hexadecenoic acid	Palmitoleic acid	1 to -0.5		
18:1(Δ ⁹)	CH ₃ (CH ₂) ₇ CH— CH(CH ₂) ₇ COOH	cis-9-Octadecenoic acid	Oleic acid (Latin oleum, "oil")	13.4		
18:2(Δ ^{9,12})	CH ₃ (CH ₂) ₄ CH= CHCH ₂ CH= CH(CH ₂) ₇ COOH	<i>cis-,cis-9,</i> 12- Octadecadienoic acid	Linoleic acid (Greek linon, "flax")	1-5		
18:3(Δ ^{9,12,15})	CH ₃ CH ₂ CH=CHCH ₂ CH= CHCH ₂ CH= CH(CH ₃),COOH	cis-, cis-, cis-9, 12, 15- Octadecatrienoic acid	α -Linolenic acid	-11		
20:4(∆ ^{5,8,11,14})	CH ₃ (CH ₂) ₄ CH= CHCH ₂ CH= CHCH ₂ CH=CHCH ₂ CH= CH(CH ₂) ₃ COOH	<i>cis-,cis-,cis-,cis-5,</i> 8,11, 14- Icosatetraenoic acid	Arachidonic acid	-49.5		
*All acids are shown the carboxyl carbon.	in their nonionized form. At pH 7,	all free fatty acids have an io	nized carboxylate. Note that r	umbering of	carbon ato	ms begins at
[†] The prefix <i>n</i> - indicat variety of branched f indicated; in biologic	es the "normal" unbranched strue orms; "n-dodecanoic" specifies th al fatty acids the configuration is	cture. For instance, "dodecan le linear, unbranched form. Fo almost always cis.	oic" simply indicates 12 carbo or unsaturated fatty acids, the	n atoms, which configuration	h could be a n of each do	arranged in a puble bond is
Table 10-1 Lehninger Princi	ples of Biochemistry, Fifth	Edition				

	common name	IUPAC name	melting point (C ^c
12:0	laurate	dodeconoate	44
14:0	myristate	tetradeconoate	52
16:0	palmitate	hexadeconoate	63
18:0	stearate	octadeconoate	70
20:0	arachidate	eicosanoate	75
22:0	behenate	docosanoate	81
24:0	lignocerate	tetracosanate	84

8

Common unsaturated fatty acids

	common name	IUPAC name	melting point
			(C°)
16:0	palmitate	hexadeconoate	63
16:1 ∆ ⁹	palmitoleate	cis-∆ ⁹ -hexadeconoate	-0.5
18:0	stearate	octadeconoate	70
18:1 ∆ ⁹	oleate	cis-Ƽ- octadeconoate	13
18:2 ∆ ^{9,12}	linoleate	cis- $\Delta^{9,12}$ - octadeconoate	-9
18:3 Δ ^{9,12,15}	linolenate	cis- $\Delta^{9,12,15}$ - octadeconoate	-17
20:0	arachidate	eicosanoate	75
20-4 ∧5,8,11,14	arachindonate	cis- Λ ^{5,8,11,14-} eicosatetraenoate	-49

Carbon	Comm n Structure* Systematic name ¹ (deriv		Common name	Meltina	Solubility at 30 °C (mg/g solvent)	
skeleton		(derivation)	point (°C)	Water	Benzene	
12:0	CH ₃ (CH ₂) ₁₀ COOH	n-Dodecanoic acid	Lauric acid (Latin <i>laurus,</i> "laurel plant")	44.2	0.063	2,600
14:0	CH ₃ (CH ₂) ₁₂ COOH	n-Tetradecanoic acid	Myristic acid (Latin <i>Myristica,</i> nutmeg genus)	53.9	0.024	874
16:0	CH ₃ (CH ₂) ₁₄ COOH	n-Hexadecanoic acid	Palmitic acid (Latin <i>palma,</i> "palm tree")	63.1	0.0083	348
18:0	CH ₃ (CH ₂) ₁₆ COOH	n-Octadecanoic acid	Stearic acid (Greek stear, "hard fat")	69.6	0.0034	124
20:0	CH ₃ (CH ₂) ₁₈ COOH	n-Eicosanoic acid	Arachidic acid (Latin <i>Arachis,</i> legume genus)	76.5		
24:0	CH ₃ (CH ₂) ₂₂ COOH	n-Tetracosanoic acid	Lignoceric acid (Latin <i>lignum,</i> "wood" + <i>cera</i> ,"wax")	86.0		
16:1(Δ ⁹)	CH ₃ (CH ₂) ₅ CH= CH(CH ₂) ₅ COOH	cis-9-Hexadecenoic acid	Palmitoleic acid	1 to -0.5		
18:1(Δ ⁹)	CH ₃ (CH ₂) ₇ CH= CH(CH ₂) ₇ COOH	cis-9-Octadecenoic acid	Oleic acid (Latin oleum, "oil")	13.4		
18:2(∆ ^{9,12})	CH ₃ (CH ₂) ₄ CH= CHCH ₂ CH= CH(CH ₃) ₇ COOH	<i>cis-,cis-9,</i> 12- Octadecadienoic acid	Linoleic acid (Greek linon, "flax")	1-5		
18:3(Δ ^{9,12,15})	CH,CH,CH—CHCH,CH— CHCH,CH= CH(CH,),COOH	cis-,cis-,cis-9,12,15- Octadecatrienoic acid	α-Linolenic acid	-11		
20:4(∆ ^{5,8,11,14})	CH ₃ (CH ₂) ₄ CH= CHCH ₂ CH= CHCH ₂ CH=CHCH ₂ CH= CH(CH ₂) ₃ COOH	<i>cis-,cis-,cis-,cis-</i> 5, 8,11, 14- Icosatetraenoic acid	Arachidonic acid	-49.5		
All acids are shown ne carboxyl carbon.	in their nonionized form. At pH 7,	all free fatty acids have an io	nized carboxylate. Note that n	umbering of	carbon ato	ms begins at
The prefix <i>n</i> -indicat ariety of branched i idicated; in biologi	tes the "normal" unbranched struc forms; " <i>n</i> -dodecanoic" specifies th cal fatty acids the configuration is	cture. For instance, "dodecand le linear, unbranched form. Fo almost always cis.	ic" simply indicates 12 carbon or unsaturated fatty acids, the	atoms, which configuration	h could be n of each de	arranged in a ouble bond is
able 10-1		2000-000-000-000-000-000-000-000-000-00				
ehninger Princi	inles of Biochemistry, Fifth	Edition				

	Trans Fatty Acids in Some Typical Fast Foods and Snacks			
		Trans fatty acid content		
		In a typical serving (g)	As % of total fatty acids	
French fries		4.7-6.1	28-36	
Breaded fish bur	ger	5.6	28	
Breaded chicken nuggets	I	5.0	25	
Pizza		1.1	9	
Corn tortilla chip	os	1.6	22	
Doughnut		2.7	25	
Muffin		0.7	14	
Chocolate bar		0.2	2	

Essential fatty acids The body can synthesize most of the fats it needs from the diet. Two essential fatty acids, linoleic acid (18:2 D^{9,12} or Omega-6) and alpha-linolenic (18:3 D^{9,12,15} or Omega-3), cannot be synthesized in the body and must be obtained from food Linoleate is abundant in oils and Linolenate is found in plants and fish oils Adequate intake of the essential fatty acids results in numerous health benefits. Ideally, the ratio of omega-6 to omega-3 fatty acids should be between 1:1 and 4:1

□ Five general types of membrane lipids:

- 1. Glycerophospholipids: two FAs are joined to glycerol
- 2. Galactolipids: two fatty acids are joined to glycerol but lack the phosphate group
- 3. Sphingolipids: a single fatty acid is joined to a fatty amine, sphingosine
- 4. Archaeal tetraether lipids: two very long alkyl chains are ether-linked to glycerol at both ends
- 5. Sterols: has 4 fused hydrocarbon rings

Precursor of X (HO — X)	Formula of - O - X	Name of resulting glycerophospholipid
Water	-0-H	Phosphatidate
Choline	$-$ O $-$ CH ₂ CH ₂ $\overset{\textcircled{}}{N}$ (CH ₃) ₃	Phosphatidylcholine
Ethanolamine	$- O - CH_2 CH_2 \overset{\oplus}{NH_3}$	Phosphatidylethanolamine
Serine	− 0 − CH ₂ − CH CO0 [©]	Phosphatidylserine
Glycerol	- O - CH ₂ CH - CH ₂ OH	Phosphatidylglycerol
Phosphatidyl- glycerol	$\begin{array}{cccc} OH & & O \\ & & & & & \\ O & CH_2OCR_3 \\ & & & & \\ O & R_4COCH \\ & & & & \\ O & R_4COCH \\ & & & & \\ O & R_4COCH \\ & & & & \\ O & R_4COCH \\ & \\ O &$	Diphosphatidylglycerol (Cardiolipin)
myo-Inositol	H OH OH HO OH HO OH HO OH	Phosphatidylinositol

Sphingolipids

- In Sphingolipids, the sphingosine molecule (4sphingosine or one of its derivatives) replaces glycerol
- □ Ceramide is the parent compound for this group

Classes of Sphingolipids

- Three classes of sphingolipids: all derived from ceramide and differ in the polar head group
 - Sphingomyelin: contain phosphocholine or phosphoethanolamine as polar head
 - Glycosphingolipids (neutral glycolipids): cerebroside (a single sugar linked to ceramide) and globoside (2 to 4 sugars linked to ceramide)
 - Gangliosides: have oligosaccharides as polar head groups and one or more residues of N-acetylneuraminic acid (NeubAc), a sialic acid

lsoprenoids

Includes lipid vitamines A, E and K

Vitamin D is an isoprenoid derivative of cholesterol